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Abstract

The Whitney project is integrating commodity off-the-shelf PC hardware and soft-

ware technology to build a parallel supercomputer with hundreds to thousands of

nodes. To build such a system, one must have a scalable software model, and the

installation and maintenance of the system software must be completely auto-

mated. We describe the design of an architecture for booting, installing and config-

uring nodes in such a system with particular consideration given to scalability and

ease of maintenance. This system has been implemented on a 40-node prototype of

Whitney and is to be used on the 500 processor Whitney system to be built in
1998.

1. Work performed under NASA Contract NAS 2-14303
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1.0 Introduction

Recent advances in "commodity" computer technology have brought the

performance of personal computers close to that of workstations. In addition,

advances in "off-the-shelf" networking and operating system technology have

made it possible to design a parallel system made purely of commodity

components, using a public domain operating system, at a fraction of the cost of

MPP or workstation components. The Whitney project, at NASA Ames

Research Center, attempts to integrate these components in order to provide a
cost effective parallel testbed.

While the cost/performance benefits of using commodity components may be

clear, there are also obvious problems in scaling such a system to more than a

couple of dozen nodes. One of the key issues in building such a system is design-

ing a node installation and management software that scales. This issue, while it

may seem to be secondary, is in fact vital to building a serviceable and useful

MPP system. For example, when 100 nodes are delivered, how long does it take

to integrate and install them. Also, when a node fails, how hard is it to swap in a

new system to replace it. If it takes 20 minutes to install a new node, it would

take a week to install a 500 nodesystem. Therefore, we must build a software

system that is automatic, requires minimal system operator intervention, and

allows spare nodes to acquire their identity easily. Further, we must do this with-

out requiring the node to have a keyboard or monitor installed, since providing

these would be expensive and would require prohibitive amounts of space in a

large system.

In this paper an architecture for such a system is described. This system is

currently working in the 40-node Whitney prototype and it has been designed to

be scalable to the next Whitney system, with around 500 nodes. While there are

likely to be additional scalability issues that will appear as Whitney grows, the

prototype system works well and is designed in such a way that additional

capacity can be added if necessary.

The rest of this paper is organized as follows. Section 2 describes the overall

architecture of Whitney, both hardware and software. In Section 3, trade-offs in

designing a boot/configuration architecture are described as well as the specific

architecture design utilized in Whitney. Finally, Section 4 describes future work

and additional scalability issues that may be faced in the final Whitney design.

2.0 Whitney System Architecture
As an experiment in using commodity technologies, Whitney is designed to take

advantage of low cost node hardware as well as public domain software and
operating systems. To date, we have chosen to use the Linux OS and Intel Pen-

tium Pro processor based systems. However, the architecture of Whitney is not

dependent on the operating system or on the node hardware. Instead, we concen-

trate on a design that is flexible and that does not rely on any uncommon hard-
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ware or software features. This means that the Whitney design could be built on

top of almost any UNIX system or Windows NT utilizing any stand alone system

(i.e., workstation or PC).

2.1 Hardware

The Whitney hardware architecture is shown in Figure 1. Whitney consists of a

I/O Nodes

Front End Nodes

Figure 1: Whitney system architecture block diagram

large set of compute nodes, each of which is a small desktop system. Therefore,

each node contains a hard disk, memory, a floppy drive, etc. Some of these nodes

have special functions, as determined by Whitney's system software, and may also

have additional disk (for I/O nodes), network connections, compiler software, etc.

The Whitney nodes are all attached using an interconnection network, and files

reside on either a front end node or on a parallel file system that is built on top of

the I/O nodes. The target configuration for Whitney is 50 processors in Fiscal Year

(FY) 1997, 500 processors in FY 1998, and 5000 processors in FY 1999/2000.

Currently, Whitney consists of 36 compute nodes, 3 I/O nodes, and 1 front end

node. The compute nodes are configured as follows:

• Intel Pentium Pro 200MHz/256K cache

• ASUS P/I -P65UP5 motherboard, Natoma Chipset

• ASUS P6ND CPU board

• 128 MB 60ns DRAM memory

• 2.5 GB Western Digital AC2250 hard drive

° Trident ISA graphics card (used for diagnostic purposes only)
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They also contain at least one DEC "tulip (21140)" based Fast Ethernet card and

a Myrinet card. The final interconnection network for Whitney is still under

design. Whitney attempts to deliver the most performance per dollar, so we have

been evaluating a number of commodity and special purpose networks including
Fast Ethemet and Myrinet. The ideal network will be scalable to 1000's of nodes

and will deliver adequate performance for the lowest cost. For more information

on this evaluation see [BEN98, PeF97].

The I/O nodes are similar to compute nodes except that they contain 256MB

RAM, two Pentium Pro processors, and two 9GB SCSI disks. The Front end

node is a single processor system with 128MB RAM, a 4GB SCSI disk, and a

second Fast Ethemet connection for routing to the general NAS network and the
Internet.

2.2 Operating systern ArchifeCture

While the hardware architecture for Whitney is relatively simple, there were

some major challenges in designing a manageable base software architecture for

such a large system. First, we had to decide on what type of an operating system

we would run on each node. If some sort of distributed operating system was uti-

lized, as in the OSF/1 AD on the Inte! Paragon [Int93, Zaj93], there would be a

large amount of overhead for coordinating system nodes. This would almost cer-

tainly overload the network and result in poor system performance as the system

scaled to a large number of nodes. Another approach would be to run a small

bootstrap loader on each node, as in the iPSC/860 lint91] or SUNMOS [Rie94,

Whe94] on the Intel Paragon. This approach scales, but leaves the processing

nodes with limited I/O capability, i.e., the nodes can not open network connec-
tions outside of the machine and nodes can not have local disk or virtual mem-

ory. Another issue that exists with both the distributed OS approach and the

bootstrap loader approach is maintainability. Neither of these models is utilized

in a widely deployed system, so the operating system would have to be built spe-

cifically for Whitney, or ported to Whitney. In addition, we could not benefit

from the economies of scale derived from using a workstation or PC operating

system.

The approach that was taken was to utilize a widely deployed off the shelf UNIX

based operating system, Linux, on all nodes throughout the system. While the

basic operating system is consistent, the components installed differ depending

on node functionality. Compute nodes contain a stripped down version of the

system, containing only those components needed for running application codes,

i.e., run-time libraries, shells, debuggers, etc. I/O nodes also have a stripped

down version of the system, with the addition of the I/O server software. The

front end systems have all of the necessary compilers, editors, etc,, needed to

build application codes for the compute nodes.

While this basic approach has been used to build scalable systems in the past

such as the IBM SP-2 and the Meiko CS-2 [CaF96], making such a system
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maintainable with 100's (much less 1000's) of nodes is still difficult. One of the

main pieces we have chosen to use for integrating the system is the Portable
Batch System ! (PBS). In its "parallel aware" form, PBS daemons run on each

node. They start user jobs, make sure jobs complete correctly, enforce resource

limitations, and measure resource usage. This is far more scalable than a "single

system image" because only the actual parallel jobs need to be managed as an

ensemble. Further, it distributes the system management tasks and puts the more

system oriented functions on the actual node they control while still maintaining
a central task scheduler.

3.0 Booting, Configuring, and Maintaing Compute Nodes
One of the major scalability bottlenecks in systems such as Whitney is how to go

from an unconfigured node, as delivered from the manufacturer, to a fully con-

figured compute node. Another problem is; how does one upgrade a compute

node when a new version of the operating system becomes available? Finally,
• ¢_ • ,what does one do when a node falls. Whitney s approach to these problems is to

treat compute nodes (though not necessarily I/O and front end nodes) as inter-

changeable components. Every node has exactly the same operating system and

system software on their hard disk, and other than two files which contain the

node's identity, there is no way to distinguish between nodes. This makes main-

tenance much easier. When a node fails one can simply replace it with another

one, only the two files must be changed. Then, hardware failures can be diag-

nosed after the bad node has been replaced, leaving the main system functional.

However, there are still many problems that need to be solved for this approach
to work.

3.1 Loading and configuring node software

Assuming you have 500 PCs; how do you make them Whitney nodes? The

software could be loaded offofa CDROM, floppies, or the network. A CDROM

would work, but then you would have to build a custom CDROM for Whitney

and each node would need its own drive (unless if you wanted to move a portable

drive 500 times). Floppies are not practical because it would require dozens to

load a functional system. The answer, of course, is to install through the network,

which is already attached to every node. However, to make this system

manageable, we still need to ensure that nodes can be installed with the minimal

amount of operator intervention. Forexample, if it takes an operator 1 minute per

node it requires 8.5 hours to install a 500 node system, if it takes 10 minutes per

node it will take 3.5 days. Therefore, Whitney nodes should be able to install and

configure themselves automatically. Installing and configuring nodes

automatically on a network is quite possible, but in order to do so, the server

must be able to tell the identity of a node in order to set its two unique files

correctly and to prevent network address conflicts.

i. For more information see http://science'nas'nasa'g°v/S°flware/PBS



One approach is to burn some unique identifier in to the system's ROM. This

information can then be exchanged with the server to determine the node's

identity (e.g., the UNIX "BOOTP" protocol). This approach works, but it

requires someone to create hundreds of unique ROMs. Instead of these unique

system ROMs, one could use ethernet addresses (which are unique identifying

numbers burned in to ROM) to identify a node. Unfortunately, the problem with

both of these approaches is that the system administrator will be forced to

manage a list of hundreds (or thousands) of obscure numbers. When a node fails,

the operator would have to change a number in some table with the identifier of

the spare to be swapped in, or the ROM or ethernet card from the failed node

would have to be swapped with the spare. This poses a major impediment to

system maintainability, and the initialconfiguration 6fthe System would be

daunting.

Another approach is to dynamically assign node identity. Then, as nodes come

on line they Cbui-d-be _ssigned their networkaddress and that address will last

only until they are turned off or go down. The server would manage a pool of

addresses and allocate/deallocate them as necessary. This approach scales well,

however, it has one major drawback. That is, when a node fails, how do you tell

which node is down? Normally, the way a node failure is detected is when a node

stops responding to the network. If node addresses are dynamically assigned,

there is no way to tell where a node resides physically from its network address.

This is less of a problem with a small system, but with hundreds of systems it

would be virtually impossible to troubleshoot node failures if node addresses are
not static.

The final approach, which was adopted for Whitney, is to have a device that

identifies a node that can be easily moved between systems (i.e., it does not

require the system's case to be opened). When a node fails, one must simply

move this device to the new system and it will magically take on the identity of

the failed node. One such device is a ROM that can be attached through a

parallel or serial port (e.g., a software lock like the HASP J). The problem is that

these are expensive and they would require some sort of custom "BOOTP" style

server. We have still not eliminated this approach as a possibility, but for the

early stages of Whitney, we instead decided to use a 3.5" floppy disk as the

uniquely identifying device. This has several advantages. Floppies are cheap and

easily created. We can even use Whitney nodes to create their own floppies or

new floppies for other systems. Second, floppies can hold real files, so we

actually store the two unique node files on the floppy and they can simply be

copied to the Whitney node upon booting. Finally, if you also use this floppy for

booting, the system can be booted even when there is no data on the system's

disk without requiring a special network boot BIOS. There are also some

disadvantages to floppies. They wear out, they can be erased or corrupted, and

we still do have to create one for each system as part of the initial system install.

1. see http://www.hasp.com



However these issues are easily overcome with some proactive maintenance

(i.e., frequent creation of spares and floppy replacement).

Once a node has its identity, installing and configuring node hardware is fairly

simple. Workstations have had this capability for many years. The only special

requirements that Whitney must adhere to are that the installation process must

be completely automated. However, this is fairly easy since all nodes are to be

configured identically. In the next section the actual boot/install/configure

process implemented on Whitney is described.

3.2 The boot/configure architecture of Whitney

When a node is booted, there are several possibilities. It can be fully installed

and configured, it can have some information on its hard disk, but not be fully

configured, or it can have a blank hard disk. To eliminate the need for operator

intervention when installing Whitney nodes, the Whitney nodes can boot regard-

less of their previous state. If a node has a blank hard disk, a node disk image is

automatically copied to the node disk. Ifa node's disk is valid, the node is re-

configured based on both the node specific information contained on the boot

floppy and other configuration scripts on the server. A block diagram of this pro-

cess is shown in Figure 2.

Referring to Figure 2, nodes boot from their floppy drive. The floppies must
therefore contain the most recent kernel as well as the node's TCP/IP

configuration information and the Linux bootstrap loader (LILO). Normally

when linux is booted, only a single device can be specified for the root

filesystem. Linux therefore boots and attempts to mount root from a partition on

the first IDE disk/dev/hda. However, because we did not want to assume that

disks must be configured before booting, we modified the Linux kemel such that

it will attempt to mount an NFS root if the first attempt to mount a root

filesystem fails.

Assume that a disk starts out blank. When Linux attempts to mount it, the mount

will fail. Then, we instead mount a special NFS root filesystem. This NFS root

continues to boot and then runs a special install script. The install script first

checks if a count of the number of unsuccessful installs (stored on the floppy) is

too high. This prevents nodes from installing forever in the case of a bad disk. If

this check succeeds, a disk image is copied from the file server on to the root

filesystem (/dev/hda). This disk image is simply a minimal installation of Red

Hat Linux without any modifications from what comes off the Red Hat CD. All

changes to this base image are made in other scripts. By not modifying the CD

install image, we can easily generate a new disk image, and all changes from this
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Figure 2: Whitney node boot time configuration process

base image are self documented by the scripts that make them. Table 1

summarizes the names and functions of the various scripts used to configure

Whitney nodes.

After the initial disk image is copied to the root disk, the "pre-instalI" script

performs a generic set of one time configuration changes. These changes are



Table 1: Whitney installation scripts

Network
state

Root
deviceScript location

install root on

pre-install up NFS server
(located in
/export/roots)

setup-early down

upsetup-late

/dev/hda

/dev/hda

node root disk

/usr/admin

NFS filesys-
tern on server

Description

One time changes and changes
needed to bootstrap self configura-
tion process.

Changes needed to configure net-
work, i.e., copy TCP/IP configura-
tion from floppy. Also, floppy
maintenance (check floppy file sys-
tem, reset install count).

Copy system files from/usr/admin
to appropriate directories, update
floppy kernel from/usr/admin,
make other necessary changes,
update setup-early script from
/usr/admin.

Whitney specific, but are not specific to the particular node being installed. The

types of changes made at this point are those that are either one time changes that

can not be repeated, or changes that are needed to make the boot procedure work

after the root disk is installed. For example, the/usr/admin directory (where

Whitney specific files are NFS mounted) is created, initial/etc/hosts and

/etc/passwd files are copied to the root disk, and the "setup-early" script is

copied to the root disk. Upon completion of the initial node configuration, the

node is rebooted (now with a valid filesystem on its hard disk).

After the node reboots, the Linux kernel is once again loaded from the node's

floppy. However, this time when the system attempts to mount/dev/hda, it

succeeds. The node then begins booting normally. Before the node's network

comes up, it runs the "setup-early" script. This script copies network

configuration information from the floppy to the node's hard disk. It also

performs any other configuration steps that are needed before the node's network

comes up (e.g., setting up routing tables).

Finally, the node brings up its network as well as remote (NFS mounted)

filesystems. Then it runs the "setup-late" script. This script performs any other

node configuration, and updates all global configuration files and scripts from

the copies kept on the file server.

The setup-early and setup-late scripts are run every time a node is booted with a

valid filesystem. Therefore, they must perform their changes in a way that is not

affected by whether the changes have already been made or not. Further, they

must replace any files that may have been set incorrectly in the past (e.g., if we

change a node's IP address by moving boot floppies, all of the old networking

files must be replaced with the new ones).



After running "setup-late," the node is ready and configured. This procedure

works well in most cases. However, if nodes become corrupted without actually

destroying the file system, this may not work. In these cases, an operator must

intervene, however, the only intervention needed to fix a corrupted node is to

force it to re-install itself. We do this by booting a special disk that contains a

small linux kernel and file system. When this disk boots it runs a script that

corrupts the first hard drive's superblock, thus triggering the node to re-install
itself on the next boot.

Once in operation, if changes need to be made to the compute nodes, these must

be done in one of the three setup scripts. Then, the change can either be made

manually or the nodes can be rebooted to make the change. If changes are not

made in the scripts, they will likely disappear the next time a node is rebooted.

While this may seem like a hassle, it enforces careful integration of changes and

makes the scripts self documenting. This type of careful management of node

configuration and easy reproducibility of changes is vital to operate a large

system.

4.0 Additional Scalability Issues
The major scalability bottleneck in this design, assuming the network is ade-

quate, is the server. Even with a 40 node system, if all nodes simultaneously try

to install their internal disks at once the system will fail. To alleviate this prob-

lem, we try to prevent more than 10 nodes from simultaneously installing. This,

however, may be a problem with a larger system because each install takes about

10 minutes. Therefore, in a larger system it will be important to replicate the

server on several alternate server nodes. Then, depending on the location on the

system's network, the nodes must install from one of the multiple servers. This is

relatively easy since the boot disk not only contains the node's TCP/IP informa-

tion, but also the address of the node's boot/install server. The only time this may

be a problem is if the system does not have all nodes on the same TCP/IP subnet

with their server. If this is the case, TCP/IP routing must be set up prior to the

nodes booting. Therefore, it is recommended that in the final Whitney there be at

least some network in the system that connects nodes to servers without any
routing.

Another possible bottleneck is in the use of NFS to run user jobs. While it may

be possible to perform low bandwidth I/O across NFS with 500 nodes, it may not

work. We wilt not necessarily be able to determine whether this strategy will

work until the large system is built. IfNFS does not work properly, it will be

necessary to stage user files on to the nodes prior to execution. Also, until the

parallel file system is available it will be necessary to stage files generated

during job execution off of the nodes' local filesystems. Fortunately this facility
is already built in to PBS.
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5.0 Conclusions and Future Work
We have described an architecture for maintaining system software on a com-

modity cluster based system. The system consists of a floppy disk containing a
node's kernel and identification information, a server that contains both the ini-

tial installation image for each node as well as updated system configuration

files, and a set of scripts that keep the nodes' configuration up to date regardless

of its previous state. This system is designed for maximal scalability and ease of

maintenance. While there will likely be additional issues encountered when

building the 500 processor Whitney system, this work should form a good basis

for the final software implementation.
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